Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 304: 122425, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100905

RESUMEN

G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Células Madre , Diferenciación Celular , Receptores Acoplados a Proteínas G , Regeneración Ósea
2.
Nat Commun ; 14(1): 7687, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001080

RESUMEN

Guided bone regeneration aided by the application of occlusive membranes is a promising therapy for diverse inflammatory periodontal diseases. Symbiosis, homeostasis between the host microbiome and cells, occurs in the oral environment under normal, but not pathologic, conditions. Here, we develop a symbiotically integrating occlusive membrane by mimicking the tooth enamel growth or multiple nucleation biomineralization processes. We perform human saliva and in vivo canine experiments to confirm that the symbiotically integrating occlusive membrane induces a symbiotic healing environment. Moreover, we show that the membrane exhibits tractability and enzymatic stability, maintaining the healing space during the entire guided bone regeneration therapy period. We apply the symbiotically integrating occlusive membrane to treat inflammatory-challenged cases in vivo, namely, the open and closed healing of canine premolars with severe periodontitis. We find that the membrane promotes symbiosis, prevents negative inflammatory responses, and improves cellular integration. Finally, we show that guided bone regeneration therapy with the symbiotically integrating occlusive membrane achieves fast healing of gingival soft tissue and alveolar bone.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Regeneración Tisular Guiada Periodontal , Cicatrización de Heridas/fisiología , Encía , Membranas Artificiales , Regeneración Ósea/fisiología
3.
Biomaterials ; 293: 121977, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580714

RESUMEN

Dental pulp-derived stromal cells (DPSCs) are a crucial cell population for maintaining the tissue integrity of the pulp-dentin complex. The oxytocin receptor (OXTR), a member of the G protein-coupled receptor (GPCR) superfamily, plays versatile roles in diverse biological contexts. However, the role of OXTR in dental pulp has not yet been fully understood. Here, we demonstrate the biological functions and significance of OXTR in DPSCs through a multidisciplinary approach. Microarray data of 494 GPCR genes revealed high OXTR expression in human DPSCs (hDPSCs). Blocking OXTR activity increased the expression of osteogenic and odontogenic marker genes, promoting hDPSC differentiation. Additionally, we found that OXTR is involved in extracellular matrix (ECM) remodeling through the regulation of the gene expression related to ECM homeostasis. We further demonstrated that these genetic changes are mediated by trascriptional activity of Yes-associated protein (YAP). Based on the results, a preclinical experiment was performed using an animal model, demonstrating that the application of an OXTR inhibitor to damaged pulp induced significant hard tissue formation. These results provide new insight into the oxytocin-OXTR system in the regenerative process of pulp-dentin complex.


Asunto(s)
Receptores de Oxitocina , Células Madre , Animales , Humanos , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Proteínas/metabolismo , Matriz Extracelular , Diferenciación Celular/fisiología , Dentina/fisiología , Pulpa Dental , Células Cultivadas , Proliferación Celular
4.
Biomater Sci ; 11(2): 554-566, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36472228

RESUMEN

Hybrid ionomer cements (HICs) are aesthetic polyelectrolyte cements that have been modified with a resin. The setting of HICs occurs by both monomer polymerization and an acid-base reaction. In addition, HICs contain a resin, which is substituted for water. Thus, the competition between the setting reactions and reduced water content inherently limits polysalt formation and, consequently the bioactive interactions. In this study, we explored the effects of polybetaine zwitterionic derivatives (mZMs) on the augmentation of the bioactive response of HICs. The polybetaines were homogenized into an HIC in different proportions (α, ß, and γ) at 3% w/v. Following basic characterization, the bioactive response of human dental pulp stem cells (hDPSCs) was evaluated. The augmented release of the principal constituent ions (strontium, silica, and fluoride) from the HIC was observed with the addition of the mZMs. Modification with α-mZM elicited the most favorable bioactive response, namely, increased ion elution, in vitro calcium phosphate precipitation, and excellent biofouling resistance, which deterred the growth of the bridging species of Veillonella. Moreover, α-mZM resulted in a significant increase in the hDPSC response, as confirmed by a significant increase (p < 0.05) in alizarin red staining. The results of mRNA expression tests, performed using periodically refreshed media, showed increased and early peak expression levels for RUNX2, OCN, and OPN in the case of α-mZM. Based on the results of the in vitro experiments, it can be concluded that modification of HICs with polybetaine α-mZM can augment the overall biological response.


Asunto(s)
Fluoruros , Cementos de Ionómero Vítreo , Humanos , Cementos para Huesos , Ensayo de Materiales
5.
Development ; 148(6)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33658222

RESUMEN

The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.


Asunto(s)
Citoesqueleto de Actina/genética , Actomiosina/genética , Morfogénesis/genética , Contracción Muscular/genética , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/ultraestructura , Actomiosina/ultraestructura , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Epiteliales/metabolismo , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Humanos , Mecanotransducción Celular/genética , Ratones , Regeneración/genética , Glándula Submandibular/metabolismo , Proteínas Señalizadoras YAP
6.
Clin Exp Emerg Med ; 2(1): 44-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27752572

RESUMEN

OBJECTIVE: Acute transverse myelitis (ATM) is characterized by motor weakness, sensory changes, and autonomic dysfunction. However, diagnosis of ATM is based on early-stage clinical features only (and clarification of the cause of disease), which are difficult for emergency department (ED) physicians owing to low incidence rates. We performed retrospective analysis of ATM in order to provide clinical insights for early detection. METHODS: Medical records of patients, who were finally diagnosed with ATM from January 2005 to February 2013, were investigated. Data, including demographics, clinical findings, and radiographic findings, were reviewed. RESULTS: Forty-six patients were included in the present study, with a mean age of 43.4 years. Sensory changes were identified in 45 patients (97.8%), motor weakness in 33 patients (71.7%), and autonomic dysfunction in 35 patients (76.1%). Thirty patients (65.2%) showed high signal intensity in T2-weighted magnetic resonance imaging (MRI), with lesions most frequently found in the thoracic level of the spinal cord (56.7%). There were discrepancies between sensory changes and levels of MRI lesions. Thirty-five patients (76.1%) were diagnosed with idiopathic ATM. Initial diagnostic impressions in the ED were herniated intervertebral disc (38.7%), stroke (19.4%), Guillain-Barré syndrome (12.9%), cauda equina syndrome (9.7%), ATM (9.7%), and others (9.7%). CONCLUSION: When a patient presents with motor weakness, sensory changes, or autonomic dysfunction, ATM should be initially considered as a differential diagnosis, unless the ED physician's impression after initial evaluation is clear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...